On Certain Sufficiency Criteria for p-Valent Meromorphic Spiralike Functions
نویسندگان
چکیده
and Applied Analysis 3 2. Some Properties of the Classes ∑∗ λ p, n, α and ∑λ c p, n, α Theorem 2.1. If f z ∈ ∑ p, n satisfies ∣ ∣ ∣ ∣ ( zf z )eiλ/ p−α cosλ { e zf ′ z f z α cosλ ip sinλ } ( p − α cosλ ∣ ∣ ∣ ∣ < n √ n2 1 ( p − α cosλ z ∈ U , 2.1 then f z ∈ ∑∗λ p, n, α . Proof. Let us set a function h z by h z 1 z ( zf z )eiλ/ p−α cosλ 1 z ean ( p − α cosλ n · · · 2.2 for f z ∈ ∑ p, n . Then clearly 2.2 shows that h z ∈ ∑ 1, n . Differentiating 2.2 logarithmically, we have h′ z h z e ( p − α cosλ [ f ′ z f z p z ] − 1 z 2.3 which gives ∣ ∣ ∣z2h′ z 1 ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( zf z )eiλ/ p−α cosλ 1 ( p − α cosλ { e zf ′ z f z α cos λ ip sinλ } 1 ∣ ∣ ∣ ∣ ∣ . 2.4 Thus using 2.1 , we have ∣ ∣ ∣z2h′ z 1 ∣ ∣ ∣ ≤ n √ n2 1 z ∈ U . 2.5 Hence, using Lemma 1.1, we have h z ∑∗ 0 1, n, 0 . From 2.3 , we can write zh′ z h z 1 ( p − α cosλ [ eiλ zf ′ z f z ( α cosλ ip sinλ ) ] . 2.6 Since h z ∈ ∑∗0 1, n, 0 , it implies that Re −zh′ z /h z > 0. Therefore, we get 1 ( p − α cosλ [ Re ( −eiλ zf ′ z f z ) − α cosλ ] Re ( − ′ z h z ) > 0 2.7 4 Abstract and Applied Analysis or Re ( −eiλ zf ′ z f z ) > α cosλ, 2.8 and this implies that f z ∈ ∑∗λ p, n, α . If we take λ 0, we obtain the following result. Corollary 2.2. If f z ∈ ∑ p, n satisfies ∣ ∣ ∣ ∣ ( zf z )1/ p−α { e zf ′ z f z α } ( p − α ∣ ∣ ∣ ∣ < 1 √ 2 ( p − α z ∈ U , 2.9 then f z ∈ ∑∗ p, n, α . Theorem 2.3. If f z ∈ ∑ p, n satisfies ∣ ∣ ∣ ∣ ∣ ∣ ( z 1f ′ z −p )eiλ/ p−α cosλ{ e ( zf ′′ z f ′ z 1 ) α cos λ ip sinλ } ( p − α cosλ ∣ ∣ ∣ ∣ ∣ ∣ < n 1 ( p − α cosλ √ n 1 2 1 z ∈ U , 2.10 then f z ∈ ∑λc p, n, α . Proof. Let us set
منابع مشابه
Certain subclass of $p$-valent meromorphic Bazilevi'{c} functions defined by fractional $q$-calculus operators
The aim of the present paper is to introduce and investigate a new subclass of Bazilevi'{c} functions in the punctured unit disk $mathcal{U}^*$ which have been described through using of the well-known fractional $q$-calculus operators, Hadamard product and a linear operator. In addition, we obtain some sufficient conditions for the func...
متن کاملOn convolution properties for some classes of meromorphic functions associated with linear operator
In this paper, we defined two classes $S_{p}^{ast }(n,lambda ,A,B)$ and\ $ K_{p}(n,lambda ,A,B)$ of meromorphic $p-$valent functions associated with a new linear operator. We obtained convolution properties for functions in these classes.
متن کاملSome Inclusion Properties of Certain Subclasses of P-valent Meromorphic Functions Associated with a New Operator
In this paper we introduce new subclasses of p-valent starlike, pvalent convex, p-valent close-to-convex and p-valent quasi-convex meromorphic functions and investigate some inclusion properties of these subclasses and investigate various inclusion properties and integral-preserving properties for the p-valent meromorphic function classes.
متن کاملHADAMARD PRODUCT OF CERTAIN MEROMORPHIC p−VALENT STARLIKE AND p−VALENT CONVEX FUNCTIONS
In this paper, we establish some results concerning the Hadamard product of certain meromorphic p-valent starlike and meromorphic p-valent convex functions analogous to those obtained by Vinod Kumar (J. Math. Anal. Appl. 113(1986), 230-234) and M. L. Mogra (Tamkang J. Math. 25(1994), no. 2, 157-162).
متن کاملPARTIAL SUMS OF CERTAIN MEROMORPHIC p−VALENT FUNCTIONS
In this paper we establish some results concerning the partial sums of meromorphic p-valent starlike functions and meromorphic p-valent convex functions.
متن کاملSOME INCLUSION RELATIONSHIPS FOR CERTAIN SUBCLASSES OF p-VALENT MEROMORPHIC FUNCTIONS ASSOCIATED WITH THE GENERALIZED HYPERGEOMETRIC FUNCTION∗
In this paper, we investigate several inclusion relationships of certain subclasses of meromorphically p-valent functions which are defined here by means of a linear operator involving the generalized hypergeometric function . We introduce and investigate several new subclasses of p-valent starlike, p-valent convex, p-valent close-to-convex and p-valent quasiconvex meromorphic functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014